

8th challenges in CARDIOLOGY July 2018 6th, 7th Palace Hotel Monte Real

Renal denervation in uncontrolled hypertension: the story continues to unfold

José A. García-Donaire Nephrologist. Hypertension Unit Hospital Clínico San Carlos Madrid, Spain

Global DALYs attributable to RF

GBD 2015 RF Collaboration. Lancet 2016; 388: 1659–724

¿What factors affect HTN?

¿What factors affect HTN?

Do haemodynamic mechanisms matter?

What % of hypertensives reach control?

Prevalence [% (95% Cl)]^a

	Hypertension	Awareness	Treatment	Control ^b	Control ^c
Developed countri	ies				
Men	40.2 (36.6-43.8)	48.4 (44.1-52.7)	28.8 (24.9-32.6)	33.1 (27.7–38.6)	10.6 (7.2-14.0)
Women	32.2 (29.0-35.4)	61.1 (57.3-65.0)	40.5 (36.2-44.9)	38.5 (32.6-44.3)	17.3 (13.1-21.5)
Developing countr	ries				
Men	33.4 (30.5–36.4)	42.1 (35.0-49.1)	29.9 (24.4-35.3)	29.7 (25.0-34.4)	10.2 (6.9–13.5)
Women	32.0 (28.5-35.4)	53.6 (44.5-62.8)	40.6 (32.4-48.7)	33.8 (27.9-39.6)	16.2(10.9 - 21.4)
North America					
Men	33.7 (30.7–36.6)	66.1 (58.3–73.9)	46.3 (40.3-52.3)	50.1 (39.5-60.8)	24.9 (18.0-31.8)
Women	30.6 (25.7-35.4)	70.1 (65.3-75.0)	53.3 (42.4-64.1)	55.9 (46.0-65.8)	31.0 (21.0-41.0)
Central, South Arr	nerica and Caribbean				
Men	33.1 (25.4–40.8)	61.1 (46.6-75.6)	38.4 (28.3-48.6)	37.9 (24.8-50.9)	15.9 (7.6-24.2)
Women	33.5 (25.2-41.8)	73.6 (56.1–91.0)	62.5 (48.8-76.2)	50.4 (37.5-63.3)	33.2 (18.6-47.8)
Africa					
Men	40.5 (31.5–49.6)	39.4 (20.1–58.6)	34.5 (15.6–53.4)	21.3 (17.0-25.6)	8.6 (1.9-15.2)
Women	40.3 (38.7-42.0)	55.8 (35.7-76.0)	49.0 (24.9-73.2)	24.7 (9.6-39.8)	14.6 (0-30.2)
Eastern Asia					
Men	33.6 (31.3–36.0)	37.7 (24.9-50.6)	24.1 (10.0-38.2)	25.3 (19.7–31.0)	5.7 (2.0-9.4)
Women	26.9 (25.0–28.8)	47.5 (36.8–58.2)	34.7 (23.9–45.5)	30.4 (23.2-37.5)	10.5 (7.6–13.4)
South-eastern, So	uth-central and Western Asia				
Men	31.3 (25.1–37.6)	35.3 (32.0–38.6)	27.1 (24.4–29.7)	31.8 (29.6–34.0)	10.6 (6.4–14.9)
Women	32.6 (27.937.2)	46.4 (34.4-58.5)	30.6 (28.1-33.0)	30.3 (24.7-35.8)	11.8 (8.7–15.0)
Southern Europe					
Men	37.3 (28.5–46.0)	47.3 (43.0–51.5)	23.6 (20.4-26.7)	31.4 (20.5–42.2)	7.3 (3.4–11.1)
Women	32.1 (24.4–39.8)	59.0 (49.7-68.3)	38.1 (32.7-43.5)	29.5 (21.0-38.0)	12.2 (7.0-17.3)
Northern Europe					
Men	45.8 (37.7–53.9)	40.7 (33.0-48.4)	24.7 (19.8–29.6)	29.0 (19.5–38.4)	8.0 (3.7–12.3)
Women	34.9 (27.5–42.3)	52.1 (47.2–57.0)	29.9 (22.6–37.2)	31.9 (24.4–39.4)	10.0 (5.4–14.6)
Western Europe					
Men	42.4 (37.4–47.4)	46.4 (40.6–52.2)	27.1 (24.8–29.4)	29.7 (20.3–39.1)	9.5 (5.1–13.9)
Women	29.3 (24.2-34.5)	63.0 (59.1–66.9)	42.7 (38.7-46.8)	44.5 (36.3-52.7)	22.2 (16.6–27.7)
Central and Easte	rn Europe				
Men	41.2 (34.1–48.2)	53.7 (44.6–62.8)	34.5 (26.4–42.5)	29.1 (23.3–35.0)	10.1 (4.3–15.9)
Women	38.4 (27.2–49.7)	70.8 (67.8–73.9)	50.6 (43.1–58.0)	34.4 (21.3–47.5)	17.9 (9.7–26.1)
Australia/New Zea	aland				
Men	30.2 (20.3-40.0)	54.0 (44.6-63.4)	33.2 (28.6-37.8)	50.9 (45.3-56.4)	16.7 (14.5–18.9)
Women	23.8 (18.4–29.2)	67.1 (60.4-73.8)	38.2 (30.2-46.2)	52.7 (44.3-61.0)	19.6 (16.8-22.3)

Pereira M et al. J Hypertens 2009; 27:963-75

Should BP variability be included among objectives?

Kikuya et al. Hypertension. 2008

Hipertensión resistente PA consulta > 140/90 mmHg Recibiendo 3 anti HTA (incl. diuréticos)

Schmieder RE et al Eurointervention 2013

WHAT HAVE WE LEARNT?

- Poor adherence affects BP variability
- BP measurements must be standardized
- SHAM is quite important
- Human anatomy is a key-point to optimize the results of RDN
- Patient selection is critical

WHAT DO WE BELIEVE TO KNOW?

- Prevalence and pathophysiology of HTN (resistant?)
- Morbidity and mortality associated with HTN (resistant?)
- HTN control is deficient
- Protocols of patients flows and paths are necessary

WHAT DO WE BELIEVE TO KNOW (II)?

- Patients with Isolated Systolic Hypertension may not respond as well to RDN
- Medication adherence likely modulates or masks the effect of RDN
- Patient preference is strong almost half the patients self-referred for SPYRAL HTN trials

WHAT DO WE WANT TO KNOW (#1)?

- Is the same patient that under 3 vs 7 drugs?
- 24h-ABPM has been evaluated in clinical trials?
- Have secondary causes of HTN been reasonably withdrawn?
- Concept of optimal dosage? Which anti-HTN drugs?
- Should all the hypertensives be treated with drugs?
- Biomarker of successful denervation?

WHAT DO WE WANT TO KNOW (#2)?

- What is the best patient to be treated with RDN?
- Is RDN safe in the long-term?
- What arteries should be preferable to be treated?
- How do patients with the highest expectable sympathetic activity (OSA, CKD, HF...) respond to RDN?

CASE REPORT

- Female, 44 yo.
- Resistant HTN. Diagnosed at 32 yo. LVH and albuminuria. Ckecked adherence
 - Valsartan/Amlodipine/Hctz 320/10/25mg
 - Spironolactone 100mg
 - Bisoprolol 10mg
- Type 2 DM since 2010, metformin
- Dyslipidemia since 2010, statins
- Obesity since childhood

Case report. 24h ABPM

Case report. Withdrawn of causes of 2ª HTN

ABCD

A: Apnea, Aldosteronism

B: Bruits, Bad kidneys

C: Catecholamines, Coarctation, Cushing's Syndrome

D: Drugs, Diet

Case report. RDN

Case report. RDN

Case report. RDN

Case report. 3 months later 24h ABPM

Symplicity HTN-2 at 36 months

DNR en pacientes con ERC

Renal denervation in moderate to severe CKD.

Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, Sobotka PA, Böhm M, Cremers B, Esler MD, Schlaich MP.

Neurovascular Hypertension & Kidney Disease Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Australia.

Abstract

Sympathetic activation contributes to the progression of CKD and is associated with adverse cardiovascular outcomes. Ablation of renal sympathetic nerves reduces sympathetic nerve activity and BP in patients with resistant hypertension and preserved renal function, but whether this approach is safe and effective in patients with an estimated GFR (eGFR) < 45 ml/min per 1.73 m(2) is unknown. We performed bilateral renal denervation in 15 patients with resistant hypertension and stage 3-4 CKD (mean eGFR, 31 ml/min per 1.73 m(2)). We used CO(2) angiography in six patients to minimize exposure to contrast agents. Estimated GFR remained unchanged after the procedure, irrespective of the use of CO(2) angiography. Mean baseline BP \pm SD was 174 \pm 22/91 \pm 16 mmHg despite the use of 5.6 \pm 1.3 antihypertensive drugs. Mean changes in office systolic and diastolic BP at 1, 3, 6, and 12 months were -34/-14, -25/-11, -32/-15, and -33/-19 mmHg, respectively. Night-time ambulatory BP significantly decreased (P<0.05), restoring a more physiologic dipping pattern. In conclusion, this study suggests a favorable short-term safety profile and beneficial BP effects of catheter-based renal nerve ablation in patients with stage 3-4 CKD and resistant hypertension.

Symplicity HTN-3 a 6 meses

Possible explanations: variability

Catheter-based RF Energy 100 ΔΔ 80 Λ Renal Denervation (%) Δ Δ 60 40 40% Δ Λ 20 Δ ΔΔ 0 **Reduction in Renal**

Achieved Renal Denervation with

Norepinephrine Spillover

Felix Mahfoud, and Thomas Felix Lüscher Eur Heart J 2015;36:199-202

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

Effectiveness and variability of catheterbased renal denervation 30 days after the procedure measured by renal norepinephrine (NE) spillover (n = 17).

Europea

Heart Journal

Possible explanations: expertise

Propensity scores using baseline characteristics as covariates were used to match sham control and denervation patients

*P value change in SBP for RDN compared with sham Data presented are mean (SD)

Bhatt D et al. NEJM 2014;370: 1393-01

Possible explanations: technique

<u>Baseline</u>	SBP	Measurements	(mm Hg)

0 four-quadrant tx*	179.6	158.7	168.5
1 Four-quadrant tx	178.8	161.2	171.3
2 four-quadrant tx	186.9	159.9	170.4

*1 superior, 1 inferior and 2 anterior/ posterior

Bhatt D et al. NEJM 2014;370: 1393-01

Possible explanations: drug effect

	Renal denervation group		Control group			Mean baseline-adjusted difference (95% Cl) between the two groups at 6 months	p value	
	Randomisation (mean ± SD)	6 months (mean±SD)	Mean baseline-adjusted difference (95% Cl)	Randomisation (mean ± SD)	6 months (mean±SD)	Mean baseline-adjusted difference (95% Cl)		
ABP, mm Hg	n=48	n=48		n=53	n=53			
Daytime								
SBP	155·5±16·1	139·1±17·8	–15·8 (–19·7 to –11·9)	151·0±16·0	141·7±17·5	-9·9 (-13·6 to -6·2)	–5·9 (–11·3 to –0·5)	0.0329
DBP	92·9±15·0	82·9±13·7	-9·9 (-12·5 to -7·3)	92·0±10·8	85·4±13·2	-6·8 (-9·3 to -4·3)	-3·1 (-6·7 to 0·5)	0.0922
Night time								

www.thelancet.com Published online January 26, 2015 http://dx.doi.org/10.1016/S0140-6736(14)61942-5

Possible explanations: adherence

- Even with combination pills for high BP, studies show patients become non-adherent
- ~50% of patients show episodes of drug non-adherence within 1-year of initial drug treatment

Possible explanations: adherence (II)

Ο

2

Adjusted odds ratio

3

PATIENTS ARE RARELY AT BP TARGET FOR SUSTAINED PERIOD OF TIME

TITRE: average Time per year spent by newlyidentified hypertensive patients at BP care TaRgEt

- Few patients sustained complete, year-round ontarget BP over time
- A higher time at target was associated with a lower risk of incident CVDs, independent of widely-used 0% **BP** control indicators

Time at target (TITRE) distribution (N=150,130)

8.9 months 43	3 (U.2)	•						υ.	70 (0.	63-	0.77)	
-11.9 months 11	I (0.1)	•						0.	.47 (0.	38-	0.58)	
	0	1		2	3	4	5					
		A	dju	sted	dds	ratio	•					
	CV	D'	С	on	۱p	osi	te					
	n(%)								OF	2 9	95% C	1
0%	108 (0.4)					-	-		4.51	(3.6	9-5.5	52)
Missing	39 (0.2)		-	•	-				1.80	(1.1	9–2.7	70)
<3 months	132 (0.3)			٠					1.74	(1.4	9-2.0)4)
3-5.9 months	71 (0.2)		ł						1.00	[Re	feren	ce]
6-8.9 months	46 (0.2)		•						0.73	(0.6	0-0.8	39)
9-11.9 months	13 (0.2)	_	•						0.70	(0.5	0-0.9	98)
				-	-		-	-1				
		U	1	2	3	4	ъ	6				

6.8 9.11

Adjusted odds ratio

Possible explanations: anatomy

Possible explanations: catheter

RDN data in real clinical practice

Böhm M, et al. data presented at PCR 2017 24 hour ABMP measurements shown

Publications with Spyral and "real" patients

Published Reports on Safety and Efficacy of Symplicity Spyral								
Trial	Author	Reference	Ν	Geography				
SPYRAL FIM	Whitbourn et al.	EuroIntervention . 2015;11:104-9.	50	Australia				
GLOBAL SYMPLICITY REGISTRY	Mahfoud et al.	EuroPCR 2017	258	Global				
RESISTANCE	Davies et al.	EuroPCR 2016 (Euro16A-OP0228)*	16	United Kingdom				
UK Registry	Sharp et al.	Clin Res Cardiol . 2016;105:544-52.	10	United Kingdom				
CO2 Case series	Renton et al.	Br J Radiol, 2016 20160311	11	UK				
TREND Registry	Zweiker et al.	PLoS ONE. 2016;11(8): e0161250	11	Austria				
Spyral Radial Access Case	Heradien et al.	Cardiovasc J Afr. 2016;27:53-5.	2	South Africa				
First in Man Case Series	Plehn et al.	Confluence. 2014;1(8):18-21.	7	Germany				
Distal vs. Main Ablation	Fengler et al.	J Amer Heart Assoc. 2017	50	Germany				
SPYRAL HTN-OFF MED	Townsend	Lancet 2017	38	Global				
Repeat Procedure Case	Ribichini et al.	EuroPCR 2015	1	Italy				
Main vs. Distal Ablation Beeftink et al. J Cl		<i>J Clin Hypertens</i> . 2017 doi: 10.1111/jch.12989	10	Netherlands				
	464							

SPYRAL HTN – OFF MED. RANDOMIZED, SHAM-CONTROLLED TRIAL

¹Only for patients discontinuing anti-hypertensive medications. ²According to scheduling.³Phone follow-up is required at 6 and 10 week visits. ⁴Drug testing. ⁵Med titration every 2 weeks until OSBP < 140 Kandzari D, et al. Am Heart J. 2016;171:82-91

RDN WAS DONE IN MAIN RENAL ARTERY PLUS BRANCHES SPYRAL HTN-OFF MED PROCEDURAL DETAILS

Procedural Measure (mean ± SD)	RDN (N = 38)	Sham Control (N = 42)	
Number of main renal arteries treated per patient	2.2 ± 0.5	NA	
Number of branches treated per patient	5.2 ± 2.5	NA	
Total number of ablations per patient	43.8 ± 13.1	NA	
Main artery ablations	17.9 ± 10.5	NA	
Branch ablations	25.9 ± 12.8	NA	
Treatment time (min)	57.1±19.7	NA	
Contrast volume used (cc)	251.0 ± 99.4	83.3 ± 38.5	

Adverse event (number of events)	RDN (n = 38)	Sham Control (n = 42)
Death	0	0
New myocardial infarction	0	0
Major bleeding (TIMI)	0	0
New onset end stage renal disease	0	0
Serum creatinine elevation >50%	0	0
Significant embolic event resulting in end-organ damage	0	0
Vascular complications	0	0
Hospitalization for hypertensive crisis/emergency	0	0
New stroke	0	0

SPYRAL HTN-OFF MED BLOOD PRESSURE CHANGE FROM BASELINE

RDN PATIENTS HAD STATISTICALLY LOWER SYSTOLIC BP IN THE "HIGH-RISK ZONE¹" AT 3-MONTHS

"High-risk zone" that occurs in the late night/ early morning period is usually associated with increased risk for stroke and cardiovascular events^{2,3}

- 1. Kario K et al, ACC 2018
- 2. Amodeo C, Blood Pressure Monit, 2014
- 3. Boggia J, The Lancet, 2007

RDN PATIENTS HAD STATISTICALLY LOWER DIASTOLIC BP IN THE "HIGH-RISK ZONE1" AT 3-MONTHS

"High-risk zone" that occurs in the late night/ early morning period is usually associated with increased risk for stroke and cardiovascular events^{2,3}

- 1. Kario K et al, ACC 2018
- 2. Amodeo C, Blood Pressure Monit, 2014
- 3. Boggia J, The Lancet, 2007

SPYRAL HTN CON MED RANDOMIZED, SHAM-CONTROLLED TRIAL¹

³Drug testing

Kandzari D et al. http://dx.doi.org/10.1016/ S0140-6736(18)30951-6

	Renal denervation (N=38)	Sham procedure (N=42)
Age (years)	53.9 (8.7)	53.0 (10.7)
Male	33 (87%)	34 (81%)
BMI (kg/m²)	31.4 (6.4)	32.5 (4.6)
Race		
White	13 (34%)	15 (36%)
Black or African American	4 (11%)	5 (12%)
Asian	0	1(2%)
Not reportable per local laws or regulations	18 (47%)	20 (48%)
Diabetes (all type 2)	5 (13%)	8 (19%)
Current smoker	8 (21%)	11 (26%)
Obstructive sleep apnoea	2 (5%)	10 (24%)
Peripheral artery disease	0	0
Coronary artery disease*	1(3%)	1 (2%)
Stroke and transient ischaemic attack*	0	1 (2%)
Myocardial infarction or acute coronary syndrome	0	0
Office SBP (mm Hg)	164-6 (7-1)	163.5 (7.5)
Office DBP (mm Hg)	99.6 (6.9)	102.7 (8.0)
Mean 24 h SBP (mm Hg)	152-1 (7-0)	151.3 (6.8)
Mean 24 h DBP (mm Hg)	97-2 (6-9)	97.9 (8.4)
Office heart rate (bpm)	75.6 (11.8)	73.5 (10.4)
24 h heart rate (bpm)	75-3 (11.3)	75.6 (10.7)
Mean number of antihypertensive drug classes	2.2 (0.9)	2.3 (0.8)
Median number of antihypertensive drug classes	3·0 (1·0 - 3·0)	3.0 (1.0-3.0)
Prescribed drug classes		
1	11 (29%)	9 (21%)
2	7 (18%)	11 (26%)
3	20 (53%)	22 (52%)
Drug class		
Diuretic	22 (58%)	25 (60%)
Calcium channel blocker	27 (71%)	31 (74%)
ACE-I/ARB	31 (82%)	35 (83%)
Beta blocker	4 (11%)	6 (14%)

Data are mean (SD), n (%), or median (Q1–Q3). All comparisons of baseline drugs between renal denervation and sham control groups were non-significant. BMI=body-mass index. SBP=systolic blood pressure. DBP=diastolic blood pressure. bpm=beats per minute. ACE-I=angiotensin converting enzyme inhibitors. ARB=angiotensin-receptor blockers. *These events occurred more than 6 months before randomisation.

Table 1: Baseline characteristics

Kandzari D et al. http://dx.doi.org/10.1016/ S0140-6736(18)30951-6

RDN SHOWED A SIGNIFICANT REDUCTION IN ALL BP MEASURES AT 6-MONTHS SPYRAL HTN-ON MED BLOOD PRESSURE CHANGE FROM BASELINE

24-HOUR ABPM TREND PROVIDED FURTHER PROOF OF RDN'S EFFECT

SPYRAL HTN-ON MED RDN PATIENTS SHOWED LOWER 24-HOUR SYSTOLIC BP, INCLUDING IN THE HIGH-RISK ZONE¹

"High-risk zone" that occurs in the late night/ early morning period is usually associated with increased risk for stroke and cardiovascular events^{2,3}

Kandzari D et al. http://dx.doi.org/10.1016/ S0140-6736(18)30951-6

Proposal of improvement for RDN

STAGES OF THE REFERRERS JOURNEY

FRAMEWORK AND DESIRED RESPONSE FROM THE REFERRER AT EACH POINT

Key Success Factors for this transition

- Carefully selecting patients that will "respond"
- Maximizing positive patient experience
- Communicating closely with the Referral physician

Conclusions

- Patients with RHTN has an increased mortality and current percentage of controlled population is not acceptable.
- Sympathetic hyperactivity in HTN is directly related to vascular damage.
- RDN technique is effective as if the patient is correctly selected.

Conclusions

- RDN is a *blind* technique. There are no easy-to use diagnostic tets to measure sympathetic activity in real practice. Neither to evalute successful results.
- Challenges:
 - Assure and confirm safety and cost-effectiveness.
 - Vascular anatomy and catheter/device design.
 - Clinical practice: Who is the optimal candidate? We do have hypertensives (high CV-risk) with few therapeutical options. Is it needed to treat every patients with drugs?

Obrigado. Thank you. Gracias

